
Scalable MapReduce-based Fuzzy Min-Max Neural
Network for Pattern Classification

Shashikant Ilager
School of Computer and Information Sciences

University of Hyderabad
Hyderabad

Telangana, India
shashikant.ilager@gmail.com

Dr. P.S.V.S Sai Prasad
School of Computer and Information Sciences

University of Hyderabad
Hyderabad

Telangana, India
saics@uohyd.ernet.in

ABSTRACT
Fuzzy Min-Max Neural Network (FMNN) is a pattern clas-
sification algorithm which incorporates fuzzy sets and neural
network. It is most suitable for online algorithms. Based on
this, a MapReduce-based Fuzzy Min-Max Neural Network
(MRFMNN) algorithm for pattern classification is proposed
using Twister framework. MapReduce approach is used for
scaling up the FMNN for massive large scale datasets. We
used standard membership, expansion and the contraction
functions of the traditional FMNN algorithm. The perfor-
mance of the MRFMNN is tested by using several bench-
mark and synthetic datasets against the traditional FMNN.
Results empirically established that MRFMNN achieves sig-
nificant computational gains over FMNN without compro-
mising classification accuracy.

Keywords
Neural Network, Fuzzy Sets, Classification, FMNN, MapRe-
duce, Twister, MRFMNN

1. INTRODUCTION
The introduction of the MapReduce programming model

[3], has changed the scenario of distributed computing by
giving a framework for the development of scalable algo-
rithms for big data problems. Converting the existing tra-
ditional algorithms to the MapReduce approach is the need
of the hour to deliver quick results on large scale datasets.
MapReduce framework incorporates data parallelism and
utilizes the underlying distributed heterogeneous resources
effectively. Several frameworks are designed to implement
the MapReduce programming model. Google’s Hadoop [3],
Apache Hadoop [2], Apache Spark [14], [1] and Twister [4]
are some of those. In this work, Twister is used to imple-
ment the FMNN for MapReduce approach.

The strength of the neural network, which is capable of
simulating computers to work like a human brain and ner-
vous system, has led to several innovative solutions in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICDCN ’17, January 04-07, 2017, Hyderabad, India
c© 2017 ACM. ISBN 978-1-4503-4839-3/17/01. . . $15.00

DOI: http://dx.doi.org/10.1145/3007748.3007776

field of artificial intelligence. After the introduction of Fuzzy
sets [13], several computing models and algorithms have
been proposed based on Fuzzy logic. The combination of
fuzzy logic and the artificial neural network has resulted in
hybrid intelligent system popularly known as Fuzzy Neural
Network or Neuro-Fuzzy systems [11]. The combination of
these systems makes use of the capability of each other and
reduces their individual shortcomings. Fuzzy logic also helps
neural networks to converge faster.

Fuzzy Min-Max Neural Network (FMNN) [10] was pro-
posed by Simpson for pattern classification. It is a nonlin-
ear, separable, online adaptive and one pass learning pattern
classifier. MapReduce framework is more efficient for non-
iterative algorithms. As FMNN is a single pass algorithm,
a single MapReduce job is sufficient for constructing the
classifier. Hence, FMNN is the best candidate for the con-
struction of MapReduce-based classifier. Several improve-
ments are proposed to the basic FMNN, and many refined
solutions are given. Compensatory neuron based FMNN
[9], center gravity data based FMNN [7], data core based
FMNN [15] and enhanced FMNN [8] are some of those. All
these different versions are suggested several changes to the
basic FMNN to improve the performance and accuracy. In
this work, we considered basic FMNN for conversion to the
MapReduce approach.

The remaining paper is organized as follows: Section 2
gives an overview of fuzzy sets, traditional FMNN, and Twist-
er. Section 3 describes proposed MapReduce approach to
the FMNN. Results and analysis carried out are shown in
Section 4. Finally, conclusions are drawn in Section 5.

2. BACKGROUND

2.1 Fuzzy Set
Theory of fuzzy sets was given by Zadeh [13]. Fuzzy sets

represent the objects for the real-time nature where object
precisely do not belong to a particular class. The mem-
bership function is proposed, which calculates membership
value for all the objects. Unlike in traditional sets where ob-
jects are classified in a crisp manner where membership of an
object to corresponding class is either 0 or 1, in fuzzy sets,
objects have a partial membership for corresponding class
ranging from [0,1]. The degree or probability of an object
belonging to a particular class depends on the membership
value. The membership value near to 1 indicates the object
is more likely to belong to that class and 0 indicates that
the object does not belong to the respective class.

2.2 Traditional FMNN
Simpson introduced pattern classification algorithm FMNN

by using hyperbox fuzzy sets and neural networks [10]. It
is a three layered neural network. FMNN algorithm is used
for the construction of the classifier on datasets consisting of
the numerical conditional attributes and categorical decision
attribute.

Let C1, C2... Cm denote the decision classes and let n
be the number of conditional attributes. As a preprocessing
step, all attributes are normalized to the unit range (0, 1),
hence the entire space of the objects becomes an n dimen-
sional unit cube In.

In the process of learning, hyperboxes are constructed
such that all objects in a hyperbox belong to a unique deci-
sion class. A Hyperbox is a n dimensional cube represented
by two n dimensional points V and W denoting the mini-
mum corner and the maximum corner as shown in the Figure
1.

Figure 1: A Three Dimensional Hyperbox with Min-
imum Point V and Maximum Point W

The resulting FMNN, comprising the hyperboxes is rep-
resented as a three layer neural network as depicted in the
Figure 2.

Figure 2: Traditional FMNN- A Three Layer Neural
Network

The n dimensional input layer LA corresponds to receiv-
ing the data for one training object with n conditional at-
tributes. A node in a Hidden layer layer LB represents an
hyperbox and LA and LB are fully connected. The connect-
ing edge from ith input node to the jth hidden layer node is
associated with the two weight values vij, wij denoting ith

component of minimum (V) and maximum (W) points of
the hyperbox bj .

The output layer is of the size m corresponding to the
m decision classes. As each hyperbox belongs to a single
decision class, the weight vector u coming out of a hyperbox
in a hidden layer is a boolean vector having all zeroes except
in for the connection to its decision class.

The weights between the input layer to the hidden layer
are represented by minimum point matrix (v) of size n/k
and maximum point matrix (w) of size n/k. The boolean
vector matrix between hidden layer and the output layer is
represented by u of the size k/n, where k is the total number
of hyperboxes constructed at the hidden layer.

2.2.1 FMNN Training Algorithm
FMNN neural network training comprises three steps. Fr-

om the training dataset, each instance or object is passed to
the hidden layer. The memebrship value of an object is
caluclated using the membership function [10]. Let Ah =
(ah1, ah2, ..., ahn) ∈ In is the hth input training object, Vj =
(vj1, vj2..., vjn) is the minimum point for hyperbox Bj and
Wj = (wj1, wj2..., wjn) is the maximum point of the Bj . γ
acts as sensitivity parameter that controls how fast mem-
bership value decrease as the distance between Ah and Bj

increases. Let bj(Ah) is membership function for the jth

hyperbox 0 ≤ bj(Ah) ≤ 1, it is defined as the following
equation 1.

bj(Ah) =
1

2n

n∑
i=1

[max(0, 1−max(0, γmin(1, ahi − wji)))

+max(0, 1−max(0, γmin(1, vji − ahi)))]
(1)

Initially, in case if no hyperbox of the corresponding class
exists, a new point hyperbox is created with the same di-
mension as that of the current instance of the training ob-
ject (Vj = Wj = Ah). Otherwise, fuzzy membership value
is calculated for all the hyperboxes belonging to the same
class.

For every training object, membership values are calcu-
lated for the corresponding hyperboxes (hyperboxes which
belong to the same decision class). The training object
is included to the hyperbox to which it is fully contained
(membership value = 1). If the training object is not fully
contained in any of the hyperbox, then the nearest hyper-
box is identified which has the highest membership value.
The expansion criteria are checked for the identified hyper-
box. If the expansion criteria are satisfied, the hyperbox
is expanded to contain the training object. If the expan-
sion criteria are not satisfied, a new point hyperbox is in-
cluded in the hidden layer such that Vj = Wj = Ah. After
every expansion, overlap test is carried out to identify the
overlapped region between two hyperboxes belonging to two
different classes. If overlap exists, the contraction is done
to remove the overlapped region. The detailed equations
for expansion test, overlap test, and contraction process are
present in [10].

2.2.2 FMNN Testing Algorithm
In FMNN testing algorithm, the test case or test object

is passed to the all the neurons (hyperboxes) at the hidden
layer. Fuzzy membership value is calculated for each hy-
perbox. At the output layer, the highest membership value

instance is chosen among multiple membership values. The
corresponding class of the hyperbox is the class of the test
case.

2.3 Twister: An Iterative MapReduce Frame-
work

MapReduce is a programming model which facilitates to
deal with the large size data. Twister[4] is a light-weight
framework which implements MapReduce programming mo-
del. Unlike popular framework like Hadoop [12], Twister
also supports in-memory computation for the iterative Map-
Reduce algorithms. It effectively keeps all the initial loaded
data in the main memory until all the iterations are over,
hence reducing the cost of the I/O and computation time.

Twister framework has components like Driver, Mapper,
Reducer, Collector, and Combiner. The driver acts as the
main program. Twister categorizes the data into two types.
First, the static data, which was loaded initially and kept in
memory until all iterations are over. Second, dynamic data
that changes over iteration. The static data which is huge in
size is partitioned into several parts and kept in distributed
locations in the cluster. All mappers load associated static
data and produce intermediate < key, value > pairs; these
values are written to the collector and later passed to the
reducers. Reducers collect the data from collector based
on group by key operation. In the group by key opera-
tion, values are grouped based on the similar key and this
< key, listofvalues > will be input to the reducer. Re-
ducer performs aggregation or summation of these list of
values. Reducer output < key, aggregatedvalue > is writ-
ten to combiner where it acts as the global reducer for all
the reducers output. The combiner produces the final result
which need not be in the form of < key, value >. The driver
gets the result from the combiner. Based on some condition,
the driver decides about further iterations.

Even though in this work we are not using iterative MapRe-
duce approach, we used Twister because it provides higher
granularity for the map tasks. The configurable map tasks
allows them to work with the large chunk of data and to
produce the intermediate result. Basic Hadoop primarily
focuses on fine-grained granularity for map tasks hence in-
creases the size of intermediate data and causing more net-
work latency. This is evident from the result obtained from
[5], it is shown that even for non iterative (single MapReduce
job) MapReduce application like CLARA, Twister outper-
formed Hadoop in terms of computation time. Other than
this advantage, the proposed solution is generic in nature
and implementable on all the frameworks which support
MapReduce such as Hadoop [12], Spark [14], [1] and etc.

3. SCALABLE MAPREDUCE-BASED FMNN
MapReduce-based FMNN (MRFMNN) is the proposed

algorithm for scaling FMNN using Twister’s MapReduce
framework. The input dataset is preprocessed before train-
ing the neural network.

3.1 Data Pre-Processing & Partitioning
The complexity of FMNN on training one object is di-

rectly proportional to the number of hyperboxes created
thus far. But in the pattern space In, because of param-
eter γ, a hyperbox which is sufficiently away from current
training object may not have any impact on the training,
i.e., because of the inherent locality aspect of hyperboxes

influencing each other in the training process. One can re-
duce the complexity of training by considering only the near
by hyperboxes instead of the entire collection without com-
promising the classification accuracy of the system.

With this motivation and to incorporate parallelism throu-
gh MapReduce, we are proposing a space division approach
in which, based on the nature of training data the pattern
space In is subdivided. The FMNN algorithm works parallel
on each subspace by working on the only subset of training
data falling into that space. When we used fixed cutpoint
of 0.5 in a dimension to divide the space into subspaces, the
result of the division was highly unbalanced due to the scat-
tered training objects. Hence different mappers work with
the varying sizes of data. To overcome this, we used the
median of the dimension as the cutpoint.

The space division approach is given in the Algorithm
1. In our approach, the user needs to provide the number
of mappers that are available in the cluster. Usually, this
is constrained by the number of processing cores available
including all the nodes in the cluster.

Algorithm 1 DataPartiton

DataPartiton
Input: Training dataset, N : Number of Mappers
Output: Partioned Files

1: Randomly select log2N number of dimension for divid-
ing the space.

2: for all training dataset instances do
3: for all i = 1to log2N number of dimensions do
4: fileid = ””;
5: if current training object in ith dimenion < median

of ith dimension of the dataset then
6: fileid = Concatenate(fileid, 0);
7: else
8: fileid = Concatenate(fileid, 1);
9: end if

10: end for
11: Write the training object into file associated with dec-

imal of the binary fileid
12: end for

For the N number of mappers, an equal number of parti-
tioned files are generated by dividing the pattern space In

into N subspaces. The fileid′s are generated of the length
of log2N binary digits, hence N number of such fileid′s are
generated from log2N binary digits for each subspace. All
the objects are written to the file of their respective fileid.
During runtime, each mapper gets a single partitioned file as
input. Hence, effectively all mappers work in parallel with
different subspaces.

The effect of space division assures that there will not be
any overlap between hyperboxes belonging to two different
space partitions. This is because two points in two different
space partitions satisfy to belong to on two different sides of
the median cut point on at least one dimension from the set
of dimensions used for space division. Hence on that par-
ticular dimension, no overlap can exist between hyperboxes
constructed in these two space partitions. Hence, aggre-
gating hyperboxes from different space partitions which are
locally constructed will not affect the classification accuracy.
But there is a chance for the larger number of hyperboxes
being formed as there exist a possibility of the merger of

hyperboxes across the boundary of space partition in the ex-
pansion step. However, In this work, we do not consider the
merging of hyperboxes across different subspaces in order to
reduce the computational overhead and complexities with
respect to the distributed environment. If the difference in
cardinality of hyperboxes constructed through our proposed
approach is similar to or slightly higher than the cardinality
of hyperboxes constructed in the traditional approach, then
the gains obtained in training time will compensate the dis-
advantage resulting from larger cardinality of hyperboxes.
More importantly, this way of distribution helps in working
with large datasets which can not fit into a single system’s
main memory.

3.2 MRFMNN Training

Figure 3: MRFMNN Training- A Map Only Ap-
proach

The flow of MRFMNN training algorithm is shown in Fig-
ure 3. The training part contains Map only approach. After
generating hyperboxes locally at each mapper, the result is
not aggregated at a single plcae since MRFMNN testing also
follows distributed approach.

The partitioned training datasets will be loaded into all
the mappers of Twister as the static data component, and
all these mappers follow traditional FMNN training process.
The hyperboxes are expanded and checked for overlap. If an
overlap exists, the contraction is done to remove the overlap.
All the mappers perform these processes locally and generate
the hyperboxes. Once the complete network is trained, the
final information of hyperboxes is written to the local disk
of the respective machines.

In Algorithm 2 of MRFMNN training, we also propose a
better performance logic for the FMNN. Instead of perform-
ing the overlap test on an inclusion of each training object
to the network, we perform overlap and the contraction once
the complete network is trained with all the training objects.
In the case of the large size datasets, we observed that the
total number of overlap tests resulting in contraction step is
much smaller compared to the size of the training dataset.
Hence, this introduces computational overhead in training
process. This improved step will reduce significant computa-
tion time as it minimizes the number of overlap tests without

compromising with the accuracy of the classification.

Algorithm 2 MRFMNN Training: A Map only Approach

Mapi ∀i { i = 1 to Number of partitioned datasets}
Input: Training dataset from partiotioned dataseti
obtained from dataset preprocessing.
Output: Set of hyperboxes, minimum point
V , maximum point W , and class label Cx.

1: for all input dataset instances do
2: Calculate Membership value for all the hyperboxes

of same decision class
3: if Membership V alue == 0 then
4: Create a new point hyperbox
5: else
6: Find a hyperbox of the same decision class which

gives highest Membership V alue
7: Expand the hyperbox if expansion criteria are sat-

isfied
8: end if
9: end for

10: For a pair of hyperboxes belongs to two different classes,
perform overlap test. If overlap exists, perform contrac-
tion.

11: Write all the hyperbox information to the local disk

3.3 MRFMNN Testing

Figure 4: MRFMNN Testing: A MapReduce Ap-
proach

The flow of the MRFMNN Testing is shown in Figure 4.
For the given large datasets, number of hyperboxes gener-
ated are usually large in number. The complexity of clas-
sifying a test case is directly proportional to the number of
hyperboxes. Hence, the MRFMNN testing algorithm also
follows distributed MapReduce approach to gain speed up
by utilizing the distributed resources.

An equal number of mappers are used as that of train-
ing. All the test objects are broadcasted to all the mappers.
As shown in Algorithm 3, Mappers load the respective hy-
perbox information which was generated during the training
process. The Mapper process calculates membership value
for all the test objects on all the hyperboxes. The local best

result, the one which has highest membership value, and
corresponding class label of that hyperbox is the output of
the Map function. All the mappers for every test object
write the output, i.e., local best membership value and as-
sociated class label (m,c) pair to the collector process with
some dummy key.

Algorithm 3 MRFMNN Testing: A MapReduce Approach

Mapi ∀i { i = 1 to Number of partitioned hyperbox data}
Input: Testing dataset
Output: list of local best result, (m,c) for all test objects
in dataset

1: Load the hyperbox information from local memory
2: for all test input data instance from testing dataset do
3: for all hyperboxes 1 : n do
4: calculate the membership value
5: end for
6: Find a local best result, which has highest member-

ship value
7: end for
8: Write the local best result (m, c) for all objects to the

Collector with some dummy key

Reduce
Input: List of (m,c) values for each test object of test
dataset from all mappers.
Output: Class label for test objects in dataset.

1: for all test objects in test dataset do
2: Identify the global best result for all test objects,

which has the highest membership value from the list
3: end for
4: Return classified class label for all the test objects to the

Twister’s Combiner.

Reducer gets the list of values (m,c) pairs for all test ob-
jects as the value object from the collector. The value object
has the list of membership values for each test object. It fil-
ters out the value which has the highest membership value
and it is considered as a global best result. Similarly, for all
the test objects, the global best result is identified. Finally,
Reducer writes the membership value and class label for each
test object (m,c) pair as a list of values to the combiner, and
the driver gets final output from the combiner.

4. EXPERIMENTS AND RESULTS

4.1 Experimental Setup
The experiments are carried out in a cluster. The exper-

imental setup consists of 4 computing nodes. Each com-
puting node has Intel i5 processor with clock speed of 3.2
GHz, 4 cores each, and have 4 GB of primary memory. One
among the four nodes was configured as both master and
worker node and remaining three were only worker nodes.
These nodes were installed with OpenSuse 13.2 OS with
Java 1.7.0 75 and cluster was set up using Twister 0.9 and
ActiveMQ as message broker running in one of the nodes. In
all the experiments with MRFMNN, we have used 16 Map-
pers in the training. In testing, the same number of mappers
and a single reducer is used.

4.2 Datasets
To check the accuracy of pattern classification of MRFM-

NN, standard datasets are chosen from the UCI repository

[6]. The dataset descriptions are shown in the Table 1.

Table 1: Dataset Information
Datasets No of Dimensions No of Attributes

Iris 150 4
Wine 178 13

Ionosphere 351 34
Segment 2310 19
Shuttle 58000 9

SatImage 100 600000 36
Synthetic 400000 100

To evaluate the scalability of MRFMNN on big datasets,
we have extended the standard dataset Satellite Image (SatI-
mage) from 6436 instances to 6 lakh (1 lakh = 100 thousand)
instances by replicating into 100 times (SatImage100). A
Synthetic dataset is also generated which consist of 4 lakh
instances and 100 attributes; this Synthetic dataset has two
class labels, class 1 has randomly generated attributes rang-
ing from [0,0.7] and class 2 has attributes ranging from
[0.4,1.0]. The overlap is maintained between two classes
which usually exists in real datasets also, this helps to eval-
uate the accuracy of classification in a more natural way.

4.3 Results and Analysis
For all the datasets, 70% of data is used for training the

neural network and remaining 30% is used for testing the
neural network. The stratified sampling is used to parti-
tion the data into training and test datasets. In both the
FMNN and MRFMNN implementation, the sensitivity pa-
rameter γ of the membership function and the hyperbox
expansion threshold parameter θ are set to 4 and 0.3 re-
spectively, these are experimentally tuned parameters. The
MRFMNN classification accuracy is compared with tradi-
tional FMNN (sequential) for all the datasets. The results
are tabulated in Table 2, the number of hyperboxes created
in both traditional FMNN and MRFMNN are tabulated in
Table 3.

Table 2: Accuracy Comparison between Traditional
FMNN and MRFMNN

Datasets Traditional FMNN MRFMNN
Iris 95.5% 100%

Wine 96.26% 100%
Ionosphere 93.39% 91.50%
Segment 92.06% 92.92
Shuttle 99.75% 99.81%

SatImage100 90.43 % 89.56%
Synthetic 100% 100%

Table 3: Comparison of Number of Hyperboxes Cre-
ated

Datasets Traditional FMNN MRFMNN
Iris 9 12

Wine 26 36
Ionosphere 59 67
Segment 23 49
Shuttle 26 50

SatImage100 226 253
Synthetic 114276 114786

Results have shown that the classification accuracy of
MRFMNN is comparable to FMNN. The observation can be
made that the classification accuracy of MRFMNN for the
datasets Iris and Wine is improved compared to the tradi-
tional FMNN. Even though hyperboxes constructed through
MRFMNN and FMNN are based on the same training datas-
et, the resulting hyperboxes are not identical and hence raise
the differences in classification accuracies.

It is important to note that due to the splitting of the
space in multiple dimensions, the number of hyperboxes cre-
ated is slightly increased compared to traditional FMNN.
The division of pattern space results in the split of those
hyperboxes that may form across the division axes between
the subspaces. However, the difference in a number of hy-
perboxes is not huge, indicating MRFMNN does not signif-
icantly increase complexity at the hidden layer.

Changes resulting in hyperboxes because of space division
in MRFMNN is not always resulting in better classification
accuracy. For example, in the case of datasets Ionosphere
and SatImage100 classification accuracy is slightly decreased
compared to FMNN. The reasons for this will be investigated
in the future.

4.4 Scalability Test with Large Datasets
For smaller datasets which can be computed in a single

system easily may not get computational gain with our ap-
proach. The first four datasets in Table 1 are the very
small size in nature and result in a small number of hy-
perboxes. So the communication in MapReduce approach
causes more overhead compared to actual computation. In
such cases, FMNN gives better computational gain com-
pared to MRFMNN. Hence MRFMNN is relevant for large
and very large decision systems.

The scalability test with large datasets has been con-
ducted to compare the computational gain with respect to
time while training the neural network. Experiments on
MRFMNN for SatImage100 and Synthetic datasets are per-
formed on single node and in the cluster of 4 node and re-
sulting computational time for training are compared with
traditional FMNN which runs sequentially on a single sys-
tem. Results are summarized in Table 4.

Table 4: Computation Time Comparision between
Traditional FMNN and MRFMNN

Datasets

Traditional
FMNN
(in sec’s)

Space
Division
(in sec’s)

MRFMNN
1 node

(in sec’s)

MRFMNN
4 nodes
(in sec’s)

SatImage100 9.09 13.60 5.94 2.80
Synthetic 27717 44.63 1420 1189

Based on the results in Table 4, it can be observed that
MRFMNN for the SatImage100 has achieved significant com-
putational gains 34.65% over traditional FMNN in the single
system alone. The computational gain has increased in the
cluster environment (69.19%). Speed up of 2.12 on the single
system and 3.24 on the cluster is observed. For the Synthetic
dataset, speed up of 19.51 and computational gain of 94.16%
is achieved between MRFMNN with the single system and
traditional FMNN. But speedup for the synthetic dataset
is not significantly scaled up on MRFMNN in the cluster
compared to MRFMNN on a single node. Further analysis
revealed that the space division in the synthetic dataset is
more imbalanced across mappers compared to SatImage100

dataset. This is resulting in the delay for reducer invocation
and increased communication overhead. In future, better
space division approach will be investigated to overcome this
problem.

The cardinality of hyperboxes resulted by FMNN is influ-
enced by not just the cardinality of objects and attributes
but by the purity (nonoverlapping of different class regions)
of the dataset and so is the influence of the dataset on the
training time. Owing to this reason, because SatImage100
is replicated dataset, the increase in the size of the dataset
has not decreased the purity of the dataset and hence re-
sulted in the fewer number of hyperboxes as equal to the
single instance of SatImage dataset. However, the influence
of replication on file I/O in space division algorithm is ev-
ident from Table 4. But in the case of dataset resulting in
higher training complexity, the preprocessing time incurred
for space division is negligible as evident in results obtained
from the Synthetic dataset.

To analyze the computation time of testing, a comparative
analysis is done for testing on MRFMNN in the cluster and
traditional FMNN in a single system. A single test case
of SatImage100 dataset incurred 0.106 seconds in traditional
FMNN whereas it took 0.626 seconds on MRFMNN in the
cluster. Similarly, a test case of the Synthetic dataset with
traditional FMNN incurred 8.53 seconds whereas MRFMNN
took 1.59 seconds in the cluster.

The result is expected as SatImage100 training results in
only 253 hyperboxes whereas Synthetic dataset results in
114786 hyperboxes. Hence testing with MapReduce ap-
proach is recommended for the classification which results
in a large number of hyperboxes. In the case of fewer hyper-
boxes, cluster communication overhead is overcompensated
by actual computation.

5. CONCLUSION
A MapReduce-based distributed MRFMNN algorithm is

proposed for the large size datasets which cannot fit in sin-
gle system memory. Experiments and comparative analysis
of the results have shown that our MRFMNN classification
accuracy is comparable to the FMNN by achieving more
computational gain. We can conclude that MRFMNN is
most suitable and highly scalable classifier for massive scale
huge datasets over traditional FMNN.

In future, we investigate other approaches for pattern space
division to obtain the balanced subspaces such that all map-
pers get equal workload to obtain better speedup.

6. REFERENCES
[1] Documentation| apache spark.

http://spark.apache.org/documentation.html.
Accessed: 2016- 07- 16.

[2] M. A. Bhandarkar. Mapreduce programming with
apache hadoop. In IPDPS, page 1. IEEE, 2010.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[4] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H.
Bae, J. Qiu, and G. C. Fox. Twister: a runtime for
iterative mapreduce. In S. Hariri and K. Keahey,
editors, HPDC, pages 810–818. ACM, 2010.

[5] P. Jakovits and S. N. Srirama. Evaluating mapreduce
frameworks for iterative scientific computing

applications. In HPCS. IEEE, 2014.

[6] M. Lichman. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2013.

[7] D. Ma, J. Liu, and Z. Wang. The pattern classification
based on fuzzy min-max neural network with new
algorithm. In J. Wang, G. G. Yen, and M. M.
Polycarpou, editors, ISNN (2), volume 7368 of Lecture
Notes in Computer Science, pages 1–9. Springer, 2012.

[8] M. F. Mohammed and C. P. Lim. An enhanced fuzzy
min-max neural network for pattern classification.
IEEE Trans. Neural Netw. Learning Syst.,
26(3):417–429, 2015.

[9] A. V. Nandedkar and P. K. Biswas. A fuzzy min-max
neural network classifier with compensatory neuron
architecture. IEEE Trans. Neural Networks,
18(1):42–54, 2007.

[10] P. K. Simpson. Fuzzy min-max neural networks. i.
classification. IEEE Trans. Neural Networks,
3(5):776–786, 1992.

[11] J. Vieira, F. M. Dias, and A. Mota. Neuro-fuzzy
systems: a survey. In 5th WSEAS NNA International
Conference, 2004.

[12] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, 2. auflage. edition, 11 2010.

[13] L. A. Zadeh. Fuzzy sets. Information and Control,
8:338–353, 1965.

[14] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. In E. M. Nahum and D. Xu,
editors, HotCloud. USENIX Association, 2010.

[15] H. Zhang, J. Liu, D. Ma, and Z. Wang.
Data-core-based fuzzy min-max neural network for
pattern classification. IEEE Trans. Neural Networks,
22(12):2339–2352, 2011.

