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Abstract. The edge computing paradigm helps handle the Internet of
Things (IoT) generated data in proximity to its source. Challenges occur
in transferring, storing, and processing this rapidly growing amount of
data on resource-constrained edge devices. Symbolic Representation (SR)
algorithms are promising solutions to reduce the data size by convert-
ing actual raw data into symbols. Also, they allow data analytics (e.g.,
anomaly detection and trend prediction) directly on symbols, benefiting
large classes of edge applications. However, existing SR algorithms are
centralized in design and work offline with batch data, which is infeasible
for real-time cases. We propose SymED - Symbolic Edge Data represen-
tation method, i.e., an online, adaptive, and distributed approach for
symbolic representation of data on edge. SymED is based on the Adap-
tive Brownian Bridge-based Aggregation (ABBA), where we assume low-
powered IoT devices do initial data compression (senders) and the more
robust edge devices do the symbolic conversion (receivers). We evaluate
SymED by measuring compression performance, reconstruction accuracy
through Dynamic Time Warping (DTW) distance, and computational la-
tency. The results show that SymED is able to (i) reduce the raw data
with an average compression rate of 9.5%; (ii) keep a low reconstruction
error of 13.25 in the DTW space; (iii) simultaneously provide real-time
adaptability for online streaming IoT data at typical latencies of 42ms
per symbol, reducing the overall network traffic.

Keywords: Internet of Things · Edge computing · Symbolic data repre-
sentation · Edge storage and analytics · Data compression · Time series.

1 Introduction

The Internet of Things (IoT) enables various physical devices to embed with sen-
sors and actuators to exchange data with smart systems over the Internet. Rapid
growing IoT data are traditionally transmitted to a centralized cloud to derive
insights for smart applications. However, this remote cloud-centric approach does
not satisfy time-critical IoT application requirements [18,19] and can create net-
work congestion [17]. Consequently, edge computing mitigates these issues by
delivering computing, storage, and network resources at the network edge.
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Edge nodes are highly distributed resource-limited devices deployed in the
proximity of IoT data sources to deliver time-critical processing [18]. Unlike the
cloud, edge nodes have limited computation and storage resources. Therefore, it
becomes crucial for edge nodes to cope with the velocity and growing volume of
data generated and support applications within their resource constraints. Sev-
eral efforts have been made to reduce network traffic and improve data storage
using edge data processing techniques. In [14], authors target edge data reduc-
tion focusing on IoT data and adapting a posteriori data reduction techniques
to data streams. Nevertheless, this approach does not consider the impact of
reduced data on data analytics tasks. Consequently, Symbolic Representation
(SR) techniques are promising alternative methods to reduce the data size while
maintaining partial semantics of the data [10].

The SR helps reduce the dimension and volume of time series, enabling ef-
ficient edge data storage management. The raw data in SR are segmented and
represented with symbols that can be reconstructed to their original dimension.
Unlike common raw data compression methods, the symbolically converted data
in SR can help to directly perform data mining tasks such as pattern matching,
substring search, motif discovery, and time series prediction, which are com-
monly used techniques in IoT applications [5]. However, the state-of-the-art SR
algorithms are designed for centralized batch processing systems and perform an
offline conversion, where often fixed parameters (e.g., window and alphabet size)
are needed, making them infeasible for streaming data in modern IoT systems.

We propose SymED (Symbolic Edge Data representation) approach, i.e., an
online distributed and adaptive SR method suiting edge data storage manage-
ment and transmission. SymED is based on the Adaptive Brownian bridge-based
symbolic aggregation (ABBA) algorithm, due to its adaptiveness in window and
alphabet size. We decompose the algorithm into distributed manner with two
main components: sender and receiver. We also incorporate online normaliza-
tion and clustering for adaptation to streaming data and symbol conversion.
Furthermore, SymED allows us to adaptively adjust the reconstruction error
and bandwidth usage between sender and receiver depending on hyperparame-
ter configurations. The main contributions include (i) a symbolic representation
approach for IoT sensor-based time series, investigating the benefits of edge
storage and transmission bandwidth scarcity; (ii) an online symbolic represen-
tation algorithm for real-time symbol generations in edge environments; (iii) an
empirical evaluation of the proposed solution on real-world data sets, showing
different performance profiles and achieving raw data compression of 9.5% on
average while minimizing reconstruction error.

2 Motivation and Background

Need for Symbolic Representation on Edge: SR methods are promising
solutions that allow analytic tasks to be performed directly on reduced data and
enable the reconstruction of original data with minimal error. Existing symbolic
representation algorithms have limited applicability for edge due to the following
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Fig. 1: Illustration of ABBA [5]. (i) Creating polygonal chain of linear pieces (left
side). (ii) Clustering pieces (middle). (iii) Symbolizing (right side), i.e., abbacab.

design requirements: (1) Online: Compression should be continuous and imme-
diate (i.e., stream-based). (2) Adaptive: A SR algorithm should be adaptive,
allowing flexible compression and reconstruction performance based on applica-
tion and resource constraints. (3) Distributed: A SR should be distributed in
edge as IoT sensors themselves do not have enough computational/network ca-
pabilities. Existing SR algorithms assume apriori availability of batch data and
work offline in a centralized manner.

Symbolic Representation for Time Series Data: A SR algorithm trans-
forms time series into a string using finite alphabet size. Let us consider a
time series T = [t0, t1, ..., tN ] ∈ RN+1 converted into a symbolic representa-
tion S = [s1, s2, ..., sn] ∈ An, with symbols si coming from an alphabet of k
symbols A = {a1, a2, ..., ak} [5]. The sequence S should be of considerably lower
dimension than the original time series T , that is n << N , and it should only
use a small number of meaningful symbols, that is k << n. The symbolic repre-
sentation must also allow a reconstruction, with (i) a minimal and controllable
error, and (ii) a shape suitably close to the original time series data.

Adaptive Brownian Bridge-based Aggregation (ABBA):Our SymED
is based on ABBA symbolic method and adapted for edge environments. Figure 1
shows an example of ABBA symbolic conversion, with the black line on the left
side as the original data, and the symbolically represented data on the rightmost
side. ABBA adaptively finds linear pieces (7 red dashed lines on the left), where
similar pieces are clustered together based on their length and increment values
(middle), and each cluster is mapped to a symbol from the alphabet, resulting
in a string (right). A tolerance hyperparameter tol sets boundaries for the al-
lowed reconstruction error, where a lower value results in a lower reconstruction
error, but also a lower compression rate with more symbols. In this example, 230
data points are converted to a word of just 7 symbols (rightmost part of Fig-
ure 1). A similar inverse approach will be applied during the reconstruction of
the data. However, many challenges arise when using such algorithms for online
and resource-constrained edge environments, which we address in this work.
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3 SymED: Symbolic Edge Data representation

Online Compression

Online Digitization

  Construction of
Linear Piece

Symbolic Conversion 
- Receiver Side

Online
Normalization

 Compression 
- Sender Side

Fig. 2: SymED Components.

We present SymED as an online and adap-
tive symbolic representation method for
streaming IoT data. Figure 2 shows the
SymED components. Our goal is to en-
able distributed symbolic representation
where raw data communication and stor-
age usage are limited in IoT-edge envi-
ronments. A sender (IoT node) normal-
izes and compresses all incoming data. A
receiver (edge node) collects transmitted
data to (i) construct linear pieces (line
segments), (ii) converts them to symbols
in the digitization phase, and (iii) option-
ally reconstructs pieces or symbols again.

3.1 Sender Side - Compression

The sender compresses data stream T = [t0, t1, ...., tN ] for each new data point
tj ∈ T step-wise. Our compression technique, leverages the existing method [5]
to an online setting, with additional online normalization, shown in Algorithm 1.
The sender collects and normalizes data stream points [t0, t1, ..., tm] (m << N),
and fits them to a linear line. After transmitting only the end point of this line
to the receiver, the whole process repeats.

Online Normalization: Using normalized data is mandatory for a uniform
conversion performance, as data can arrive with arbitrary scaling. A popular
normalization technique is the Min-Max-Normalization [1,7]. We use Z-Score-
Normalization (standardization) that provides scaling data with zero mean and
unit variance. Standardization in an online setting is used for, e.g., improving
batch normalization in continual learning [15].

Online normalization also requires a window of data points to consider. There
exist multiple windows models [21] for online streaming data. Mainly, (i) land-
mark windows, which span from a landmark of the past to the present, (ii) slid-
ing windows, which have a fixed size and data points passing through them in
a first-in-first-out fashion, (iii) damped windows, which give data points weights
decaying exponentially over time. We chose the damped window model due to
its simple iterative calculation and the advantage of not requiring extra stor-
age. The standardization parameters are set as exponentially weighted moving
average (EWMA) and exponentially weighted moving variance (EWMV) [13],
defined as follows:

EWMAj = αtj + (1− α)EWMAj−1 (1)

EWMVj = α(tj − EWMAj)
2 + (1− α)EWMVj−1 (2)
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Algorithm 1 SymED - Sender

1: function onlineCompression(tol, lenmax)
2: get Ts from memory
3: err ← 0; bound← 0; lents ← 0
4: while err <= bound and lents <= lenmax do
5: tj ← getNextDataPoint()
6: append tj to Ts

7: updateOnlineNormalizationParams(tj)
8: Tsn ← standardize Ts

9: err ← getError(Tsn)
10: lents ← length(Ts)
11: bound← (lents − 2) ∗ tol
12: Ts ← last 2 elements of Ts

13: store Ts in memory
14: return first element of Ts

In Equation 1 and 2, tj indicates the next data point of the processed stream.
The hyperparameter α serves as a weight, which has an exponentially decreasing
influence on past data points. Here, EWMA and EWMV have same α value, for
simplicity and consistency. Initially, EWMA0 = t0 and EWMV0 = 1.0 are
set. All data kept in memory are standardized newly each iteration with up-to-
date EWMA and EWMV. The update process of EWMA and EWMV, using
Equations 1 and 2, can be found in Algorithm 1 (line 7). Standardization is done

through
th−EWMAj√

EWMVj

, e.g., for each data point thwith h ≤ j (line 8).

Online Compression: In ABBA compression [5], data is approximated by
a polygonal chain of linear pieces, where each piece is bounded by length and
squared Euclidean distance error. Linear pieces are defined as P = [p1, p2, ..., pn],
where each linear piece p = (len, inc) is a tuple of length and increment value.
Our proposed online compression Algorithm 1 only works on one linear piece at
a time, instead of converting them all at once, like [5]. After checking the error
and maximal length limits in line 4, one of the following cases can happen, (i) no
boundaries are reached and the algorithm continues the compression in the next
iteration by trying to add another data point tj+1 to the time series segment Ts,
(ii) if lenmax is surpassed or the error including the current data point tj is out of
bounds (see line 11 for bound value), then the loop terminates. After the loop, Ts

is set from [t0, ..., tm] back to the points [tm−1, tm], to initialize the compression of
the next segment. Finally, the endpoint of the segment tm−1 is returned and sent
to the receiver. Originally, the ABBA compression [5] would use Ts to produce
a piece p = (m − 1, tm−1 − t0) here, before moving on to compressing the next
piece. However, in SymED, we move this step to the receiver. In this way, (i) the
size of payload needed to be transmitted is reduced by half, only sending one
numeric value (tm−1) instead of two (p), and (ii) making the receiver more robust
to missing sender values. Length and increment of a piece pi are always relative
to its predecessor pi−1. One missing piece would break up the polygonal chain
of pieces ABBA depends on. SymED avoids this problem by only transmitting
data points as absolute values from the sender to the receiver.

Compressing m data points to one linear piece with length len = m − 1
requires O(m) iterations of the while loop (line 4) and recalculating the error
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Algorithm 2 SymED - Receiver

1: procedure SymED(tol, scl, kmin, kmax)
2: S ← []; C ← []; P ← []; ti−1 ← 0
3: while True do
4: ti ← getDataPointFromSender()
5: len← timeSinceLastUpdate()
6: inc← ti − ti−1

7: pi ← (len, inc)
8: append pi to P
9: S,C ← onlineDigitization(P,C, tol, scl, kmin, kmax)
10: ti−1 ← ti

at line 9 in O(m) time, hence, Algorithm 1 runs in O(m2). For the whole data
stream of size N , assuming each linear piece compresses on average m data
points (m << N), the complexity is O(N) [5].

3.2 Receiver Side - Symbolic Conversion

The job of the receiver is to listen for data points t coming from sender devices
and convert each of two subsequent data points to a linear piece p. All pieces
P are clustered in an online fashion, to get the converted sequence of symbols
S, which essentially becomes one symbol longer after each received data point.
Optionally, a reconstruction of the data stream can be done on demand. We
decided to do the symbolic conversion at the receiver instead of the sender,
because (i) the sender is relieved of the computational demands, and (ii) symbolic
conversion at the sender would require frequent and costly transmissions of the
up-to-date reconstruction centers to the receiver.

Construction of Linear Pieces: The receiver Algorithm 2 receives data
point ti in iteration i from a sender. Along with data point ti−1 of the previous
iteration, the length and increment values (len, inc) of the current linear piece
pi can be constructed. We infer len by taking advantage of the real-time online
setting. To do that, the receiver saves timestamp timei upon the arrival of each
ti. Taking the difference in times with len = timei − timei−1 allows us not to
have the sender transfer this value. Consequently, inc = ti − ti−1 completes the
construction of pi. Afterwards, at line 9, all pieces P found so far get clustered
to centers C and converted to a symbolic string S through Online Digitization
in Algorithm 3, which also determines the time complexity of Algorithm 2.

Online Digitization: The Algorithm 3 uses clustering to group pieces P =
[p1, p2, ..., pn] to centers C = [c1, c2, ..., ck]. Each center c represents a character
of the alphabet A = [a1, a2, ..., ak], mapping P to the symbolic string S =
[s1, s2, ..., sn], and the center coordinates are responsible for the reconstruction of
length and increment values of P . A scaling factor scl is provided to weigh lengths
of pieces differently from increments during 2D clustering, for scl ∈ (0,∞). The
classical approach [5] also considers that scl ∈ {0,∞}, allowing for 1D-clustering
either the lengths or increments, while scl = 0 is selected to put more emphasis
on the trends of the time series. Our proposed SymED clustering can also be
done either in 2D or in 1D, however, we focus mainly on 2D in this work.
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Algorithm 3 SymED - Receiver - Online Digitization

1: function onlineDigitization(P,C, tol, scl, kmin, kmax)
2: if length(C) < kmin then
3: L← [0, 1, ..., length(P )− 1]
4: S ← labelsToSymbols(L)
5: C ← P
6: return S,C
7: standardize P and C and scale with scl
8: tols ← getTolS(tol, P ); lenP ← length(P )
9: Cinit ← C; ko ← length(C); k ← ko − 1; err ←∞
10: while k < kmax and k < lenP and err > bound do
11: k ← k + 1
12: if k = ko + 1 then
13: append last element of P to Cinit

14: else if k > ko + 1 then
15: randomly initialize Cinit

16: C,L← kmeans(Cinit, k)
17: err ← maxClusterVariance(P,C, L, k)
18: de-standardize P , C and de-scale with scl
19: S ← labelsToSymbols(L)
20: return S,C

For SymED, we use a customized online version of k-means for both 1D
and 2D clustering, because k-means is widely studied and provides a suitable
streaming-based version [16], feasible for our online implementation. The steps
of k-means, calculation of the cluster variances, and checking them against the
tolerance boundary tol2s , follow the standard processes [5].

In the online k-means function within Algorithm 3, instead of the default
initialization (randomized seeding), we initialize cluster centers Cinit with the
values from the previous old clusters C, to remove the need for restarting a
randomly initialized clustering [16]. Consequently, the number of clusters k for
the first run of k-means is set to ko, the number of old clusters in C, to avoid
trying many values of k. If an additional cluster is still needed, k is incremented
by one, and the clustering is re-run (line 10). We initialize the newly added
center with the newest piece, while the rest of the center initialization remains
the same, ensuring fast convergence (line 13). Random-based initialization of
centers is only chosen in line 15, if the previous attempts of re-using old cluster
centers fail. The kmin and kmax limit the number of clusters, as well as the size
of the alphabet. After clustering is done, labels L = [0, 1, ...], are mapped to
symbols [‘a’, ‘b’, ...] and returned as string S, along with updated centers C.

The runtime of Algorithm 3 is bounded by the complexity of k-means. The
average complexity to produce a new symbol is therefore O(kn) for k clusters
and n linear pieces, per k-means iteration. Due to initialized centers and adding
pieces one-by-one to the clusters, only very few iterations are needed. To convert
a data stream of size N to n symbols, the resulting complexity is O(kn2).

Reconstruction: Converting a sequence of symbols S back to a time se-
ries T̂ follows three steps [5]: (i) Inverse-Digitization, replacing S with length

and increment values (l̃en, ĩnc) of their corresponding reconstruction centers
to reconstruct linear pieces, (ii) Quantization, rounding lengths of those linear

pieces back to whole numbers, generating (l̂en, înc), and (iii) Inverse-Compres-
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sion, interpolating all-time series points for the chain of linear pieces, producing

T̂ = [t̂0, t̂1, ..., ˆtN ]. This offline reconstruction procedure from symbols works for
both ABBA and SymED. Additionally, for SymED, a more accurate online re-
construction for T̂ is possible by directly doing the Inverse-Compression step,
with the original (len, inc) values of pieces constructed by the receiver.

4 Performance Evaluation

4.1 Experimental Setup

Metrics: To measure the performance of SymED, we consider four main met-
rics. Namely, (i) reconstruction error, (ii) compression rate, (iii) dimension re-
duction rate, and (iv) computational latency . We measure reconstruction error
(RE) through the Dynamic Time Warping (DTW) distance [3] between the
original time series T and the reconstruction T̂ , i.e., RE = dtw(T, T̂ ), as in [5].
Additionally, for SymED, we evaluate the reconstruction error not only from
symbols S, but also from linear pieces P , since they are also available for the
SymED receiver. The compression rate (CR) for ABBA (CRABBA) and SymED
(CRSymED) is measured as defined in Equation 3. Here, we measure how many
bytes are saved during transmission from the sender to the receiver, instead
of just sending an uncompressed raw data stream. We measure the dimension
reduction rate (DRR), a measure of data size reduction while preserving the
original data properties, by comparing lengths of converted symbols S and true

time series T , i.e., DRR = len(S)
len(T ) . Here, len() returns the length of the input

(count of symbols or data points). Dimension reduction helps to cope with the
curse of dimensionality when working with high-dimensional data.

CRABBA =
bytes(C) + bytes(S)

bytes(T )
CRSymED =

bytes(P )/2

bytes(T )
(3)

In Equation 3, bytes() returns a total number of bytes for the input. The
assumptions of this experimental setting are, a symbol/character is a size of 1
byte, and a numerical/float value has a size of 4 bytes. S is a series of symbols,
T is a series of floats, and C is a set of centers, where each center is defined
through 2 float valued coordinates. P is a sequence of linear pieces, where a
linear piece p is defined over 2 float values. With ABBA, we assume the sender
does the symbolic conversion offline in a batch, then sends all symbols S and
reconstruction centers C to the receiver. For SymED, we only need to transmit
one float value for each p, hence bytes(P )/2 for CRSymED in Equation 3. For
simplicity, any other bytes regarding a transmission protocol between the sender
and receiver are omitted. For all metrics, a lower value means better performance.

The final metric is computational latency, addressing the average amount of
computational time needed for each symbol in the online setting. We measure
the time required for a SymED sender to perform compression and a receiver to
do symbolic conversion and reconstruction on a per-symbol basis. Compared to
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offline ABBA, we take the total time for all produced symbols, i.e., how long it
takes on average to fully convert time series to symbols and reconstruct it again.

Edge scenario setup: We emulate the sender-receiver setup, where sender
is an IoT sensor streaming pre-processed data towards receiver edge node for
further processing. The setup is implemented as a multi-thread Python applica-
tion. SymED is split up as explained in Section 3. For ABBA, we assume the
sender does offline symbolic conversion of the time series and sends symbols and
reconstruction centers to the receiver, where reconstruction happens. Evaluation
is done on a Raspberry Pi 4B (4GB RAM).

Datasets: We use UCR Time Series Classification Archive [4] datasets as a
representative of IoT data [5]. We filter the test split for datasets with a minimal
length of 1000 data points, ensuring we have sufficient data for the online nor-
malization to adapt. We sample each dataset by selecting the first time series of
each class, e.g., for dataset ACSF1 with a size of 100 time series and 10 different
classes, we take a sample of 10 time series, each with a length of 1460. Table 1
shows 22 selected datasets containing 302 time series with mean length of 1673.

Baseline and Hyperparameters: We compare the results of our proposed
SymED to the original ABBA, a baseline for reconstruction accuracy. Compared
to ABBA, SymED has an additional hyperparameter α for adjusting the weights
of online normalization values EWMA and EWMV. Higher α values prefer the
most recent data, monitoring short-term variability of EWMA and EWMV, and
lower values focus on long-term estimation of mean and variance [13]. We set
0.01 ≤ α ≤ 0.02 based on empirical testing, suiting our chosen datasets. Further,
we set kmin = 3 for both ABBA and SymED, meaning that an alphabet of at
least three symbols will be used. The only exception is when |P | < kmin, where
too few linear pieces are in P to form kmin clusters, resulting kmin = |P |. We
set kmax = 100, the upper bound for the alphabet size.
For each algorithm and tolerance value, the mean of the results over all datasets
(Table 1) is taken. To compensate for the different sizes of datasets, we assign
equal weights in the evaluation, i.e., averaging results first for all time series
within a dataset, then taking the average once again over all datasets.

Table 1: Selected datasets of the UCR Time Series Classification Archive [4].
Dataset Type Size Length
ACSF1 Device 10 1460
CinCECGTorso Sensor 4 1639
EOGHorizontalSignal EOG 12 1250
EOGVerticalSignal EOG 12 1250
EthanolLevel Spectro 4 1751
HandOutlines Image 2 2709
Haptics Motion 5 1092
HouseTwenty Device 2 2000
InlineSkate Motion 7 1882
Mallat Simulated 8 1024
MixedShapesRegularTrain Image 5 1024
MixedShapesSmallTrain Image 5 1024
PLAID Device 11 1344
Phoneme Sensor 39 1024
PigAirwayPressure Hemodynamics 52 2000
PigArtPressure Hemodynamics 52 2000
PigCVP Hemodynamics 52 2000
Rock Spectrum 4 2844
SemgHandGenderCh2 Spectrum 2 1500
SemgHandMovementCh2 Spectrum 6 1500
SemgHandSubjectCh2 Spectrum 5 1500
StarLightCurves Sensor 3 1024
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Fig. 3: Running example for SymED sender (a-e) and receiver (f-j) algorithms.

4.2 Running Example

We provide a running example in Figure 3, on a time series example of 230 data
points, similar to the ABBA [5]. Here, parameters are set as tol = 0.4, α = 0.02,
and scl = 0 (1D clustering). In Figure 3, the sender-side (IoT nodes) steps are
depicted in Figures 3a-3e, the receiver side steps (edge nodes) in Figures 3f-3j.
Each sub-figure shows the generation of one new linear piece and symbol, from
left to right. For brevity, we summarized the first seven iterations in Figures 3a
and 3f, then showed the remaining iterations in the remaining figures.

The sender compresses the incoming data stream (solid black line) until a
linear piece pi is formed (red dashed line) and then sends the endpoint ti of pi to
the receiver. The receiver reconstructs pi (black dash-dotted line) from ti, and
ti−1, and does an online clustering to produce the symbol si (‘a’, ‘b’, or ‘c’ here).
SymED produces 11 symbols in total, namely, aaaabaabcba. At the beginning,
the first four symbols are produced in very short intervals, due to the online
normalization not having adapted to the data yet and also capturing noise. But
afterwards, longer linear pieces start to get formed to produce the remaining
symbols. Due to the nature of online clustering, older pieces may be assigned
to a different cluster after several updates. This can be seen for a linear piece
between t4 and t5, which changes from ‘c’ to ‘a’ (from Figure 3g to Figure 3h).

4.3 Results and Analysis

Figures 4a-4c show examples of SymED reconstruction on a few UCR time se-
ries, using tolerance tol = 0.4. The following metrics in Figure 5 are evaluated
for a range of tol values, going from 0.1 to 2.0 in 0.1 increments. Other common
parameters for Figures 4-5 are α = 0.01 and scl = 1.0, using 2D clustering.

Reconstruction error: Figure 5a shows that SymED reconstruction error
for symbol generation follows the original ABBA curve, which is a desired behav-
ior. Reconstruction errors from symbols average around 29.25 for SymED and
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Fig. 4: SymED reconstruction example on three representational datasets from
the UCR archive: (a) CinCECGTorso, (b) HouseTwenty, (c) StarLightCurves

29.60 for ABBA. In contrast, SymED online reconstruction from linear pieces
has less than half the error at 13.25, due to pieces being more true to the original
data, before being clustered and converted to symbols.

Compression rate: We compare the results of compression rates in Fig-
ure 5b, measuring the size reduction of transmitted data. As seen in Figure 5b,
ABBA compresses data to 3.1% on average, by taking advantage of transmitting
already converted symbols, which are less byte expensive than numerical data
points of SymED. SymED’s online and distributed nature comes at the cost of
having a worse compression rate of 9.5% on average.

Dimension reduction rate: Figure 5c shows dimension reduction results.
Both ABBA and SymED have similar behavior, since their compression phases
work in a similar way. Differences occur due to the online normalization of
SymED, which takes time to adapt to the data and produces a higher num-
ber of linear pieces/symbols early on, also evidenced in Figure 3. Finally, the
SymED has a mean dimension reduction rate of 9.5%, ABBA averages at 7.7%.

Computational latency: Figure 5d compares SymED sender and receiver,
how long processing takes per symbol. Lower tolerances produce many short
pieces, making clustering at the receiver dominant. In contrast, higher tolerance
values produce fewer and longer linear pieces, increasing the compression times
for the sender. On average, a SymED sender spends 30ms on compressing, and
a receiver 12ms on creating and reconstructing a symbol, summing up to 42ms
total per symbol. In Figure 5e we show the total latencies for processing an entire
time series offline. ABBA is overall faster with a mean of 2.0s, compared to 5.3s
for SmyED, however, SymED is mainly designed for online processing.

To conclude, SymED provides the benefit of lower online reconstruction error
and real-time adaptability to streaming data, with a little cost on higher data
transmission needs and computational times compared to offline ABBA.
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Fig. 5: Evaluation of ABBA and proposed SymED (averaged over all datasets).

5 Related Work

Symbolic representation (SR) algorithms have been used to convert time series
data into symbols. The basic algorithm in the symbolic conversion is SAX [10].
Another variant of SAX is proposed in [11], dedicated to online load data com-
pression and reconstruction. The authors split the time series into the event and
steady-state segments, while using symbolic conversion only on the latter one.
In this version, the alphabet is fixed, while the window length is adaptive, by
dividing segments into windows of equal information content. Although they use
adaptive window sizes, as in our proposed SymED, they focus on event-based
data instead of arbitrary time series. In [8], the author converts sensor data
streams to symbols using SAX, followed by classification with a Support Vector
Machine (SVM). Works like [9] symbolize sensor data streams using SAX and
incorporate data stream annotation in a distributed environment, interacting
over a publish/subscribe messaging service. Further, SensorSAX [6], is a SAX
variation with dynamic window length, to reduce the energy consumption of
IoT sensor streams. While using symbolic conversion to process IoT data, other
works lack adaptability by either using a static window size [8,9] or fixed alpha-
bet [8,9,6]. They also sample the data stream and produce symbols in batches, in
contrast to producing symbols consecutively in SymED. Adaptive compression of
IoT data based on different resource-limited edge conditions is proposed by [12].
However, only the impact on edge-cloud bandwidth and data transfer is consid-
ered, without addressing the impact on edge analytics. [16] targets an adaptive
streaming-based version of k-means. This solution starts with initial candidate
clusters, trying to assign each new data point in the online phase to the near-
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est cluster, and only does a complete re-clustering if the clusters are not valid
anymore. A validity check is done by analyzing the input stream’s probability
density function, where high deviations signal a concept data drift and require
a new cluster initialization. Still, they do not consider the tolerance-dependent
variance checks of clusters, as in SymED. Similarly, [19] considers data-sharing
edge concepts, while [2] deals with the bandwidth limitation. However, no online
concepts are considered with IoT data streams.

Although there exist different techniques for raw data compression in cloud
and edge [20], we particularly focus on SR for the edge. SR allows for direct
analytics on compressed data, while also enabling reconstruction of the original
data. We believe this is a crucial advantage over other raw data compression
techniques, reducing both network and storage usage for critical IoT systems.

6 Conclusions and Future Work

We proposed SymED, a real-time online symbolic representation method for
resource-constrained edge environments. We distribute the symbolic conversion
workload between IoT sender and edge receiver devices, and also minimize the
number of transmitted bytes between them. Hyperparameters in SymED, such
as tol, balance reconstruction error and compression performance, while α deter-
mines the adaptability to streaming data through online normalization. SymED
achieves on average 9.5% on compression rate and dimension reduction rate, with
a mean online reconstruction error of 13.25 in the DTW space, while taking a
mean time of 42ms to compute a symbol. Online SymED improves on reconstruc-
tion accuracy and adapting to data stream distribution, with a slight overhead
in compression and computational efficiency, compared to the offline base al-
gorithm ABBA. Our future plans involve enhancing SymED’s performance for
time-critical IoT applications by incorporating different clustering mechanisms.
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