
Data-centric Edge-AI: A Symbolic Representation
Use Case

Shashikant Ilager1, Vincenzo De Maio1, Ivan Lujic2, and Ivona Brandic1

1Vienna University of Technology (TU Wien), Austria
{shashikant.ilager, vincenzo.maio, ivona.brandic}@tuwien.ac.at

2 Ericsson Nikola Tesla, Croatia
ivan.lujic@ericsson.com

Abstract—Today’s machine learning pipelines are primarily
executed in the cloud, from data storage to data processing, model
training, and deployment. However, machine learning is moving
to edge devices, creating the demand for AI applications at the
edge, known as Edge-AI. Traditional data management practices
applied in the cloud are proving to be inefficient for Edge-AI, due
to resource and energy constraints of edge devices and real-time
requirements of applications. This paper identifies the challenges
associated with data processing for Edge-AI. We then discuss
methods for efficient data processing at the edge, leading to data-
centric Edge-AI. As a use case scenario, we discuss the symbolic
representation of time series data and explain how it could help
save the cost of data storage and processing in developing Edge-
AI applications.

Index Terms—Edge-AI, Data-centric Edge, IoT data, Symbolic
representation of data, Big data

I. INTRODUCTION

The Internet of Things (IoT) enables different types of

physical devices to embed with sensors and actuators and

exchange data with smart systems over the Internet. The

rapid growth in IoT system deployments produces a huge

amount of data, known as Big Data. Traditionally, IoT data is

transmitted and stored in a centralized cloud to derive insights

and develop smart applications. However, this cloud-centric

IoT has become infeasible for time-critical applications for

multiple reasons [8], [13], [42]. First, modern applications

require a sub-millisecond response to their requests, and the

cloud-centric model fails to provide a faster response due

to their high network latency. Second, it is expensive to

transfer IoT data to remote cloud [35] as it consumes critical

bandwidth of the backbone network and creates network

congestion [9], [10]. Consequently, edge computing promises

to solve these issues by delivering computing, storage, and

network resources across cloud boundaries [7], at the network

edge. This paradigm shift is powering the development of real-

time machine-learning-based applications, known as Edge-

AI [13], [15].

Edge-AI enables extracting information from IoT data

streams using various techniques such as machine learning,

artificial intelligence, and visualization. Edge-AI provides so-

lutions such as anomaly detection, prediction, optimization,

and decision-making, which would enable the development of

real-time smart systems [36] with several benefits, such as (1)

Edge-AI enables data security and privacy since user data do

not need to be transferred to a geographically different location

or to different ownership; (2) machine learning models such

as federated learning [45], and personalized models [3] can be

trained locally and collaboratively to preserve data privacy; (3)

Edge-AI facilitates (near) real-time analytics and applications,

such as autonomous vehicles AR/VR systems, which demand

faster data processing and response; (4) Edge-AI can assist in

reducing energy consumption since it processes data locally,

saving energy consumption of data communication [40].

Cloud-native AI assumes an infinite amount of centralized

resources to store, process, train and deploy the ML mod-

els for run-time inference. Consequently, Edge-AI depends

on resources in the geographical vicinity, where the data

is generated and consumed, i.e., at the network edge. Due

to this hyper-distribution of resources and requirement of

cost-effectiveness, edge nodes are designed as much smaller

systems to only handle necessary processing tasks in the

proximity of IoT systems [33], [42]. The edge nodes can

contain all software components of an ordinary cloud data

center, but they are resource constrained. The edge nodes can

vary from embedded devices (e.g., gateways and everyday

smart objects with limited computing capabilities), stand-alone

devices (e.g., Raspberry Pis, cloudlet servers) to micro data

centers (e.g., co-located data centers and container data centers

[1]) according to the application requirements [17]. While

edge nodes can provide support for time-critical Edge-AI

applications, they cannot scale due to limited computational

power and storage capacity [8], [13].

Several efforts have been made to build efficient data pro-

cessing techniques at the edge, such as reducing network traffic

and improving data storage [27], adapting a-posteriori data

reduction of data streams [33], raw data compression [44], and

energy reduction measures using prediction-based schemes

[11]. However, there are many challenges that still exist for

efficient edge data processing methods and the development

of machine learning pipelines for Edge-AI. We require data-
centric Edge-AI approaches to (1) cope with the velocity and

volume of data generated, (2) support applications within the

resource constraints of edge, (3) efficiently utilize the edge

devices [20], [29], and (4) deliver high-quality services to

end users with minimal cost. Therefore, in this paper, we

investigate edge data-centric processing and identify its associ-

ated challenges. Afterwards, we provide potential methods for

301

2023 IEEE International Conference on Edge Computing and Communications (EDGE)

2767-9918/23/$31.00 ©2023 IEEE
DOI 10.1109/EDGE60047.2023.00052

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

dg
e

C
om

pu
tin

g
an

d
C

om
m

un
ic

at
io

ns
 (E

D
G

E)
 |

97
9-

8-
35

03
-0

48
3-

1/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
ED

G
E6

00
47

.2
02

3.
00

05
2

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

SoCs Edge Remote cloud

Edge-AI
 applications

Data generation Data analysis Data storage

��
��
��

��
��
��

��
��
��

Fig. 1. An overview of Edge-AI.

efficient data processing to support Edge-AI. Finally, as a use

case, we describe the symbolic representation of time series

data to reduce data size with minimal or no loss of accuracy,

which is suitable for Edge-AI applications.

The rest of the paper is organized as follows. Section II

provides background details, and Section III describes chal-

lenges of edge data processing. In Section IV, we discuss the

potential methods and future directions to develop better data

processing systems for Edge-AI. In Section V, we discuss the

symbolic representation use case. Section VI provides related

work, and finally, we derive conclusions in Section VII.

II. BACKGROUND: DATA-CENTRIC EDGE-AI

Batch-processing has been the basis for designing and

building database environments for many years. This involves

extracting, transforming, loading, storing and accessing data

for building ML models and developing analytic applications.

Batch processing suits the needs of many scientific and enter-

prise applications, where data is collected for a long time and

stored and processed centrally. However, the advent of IoT and

edge computing is enabling stream-processing, where the data

is produced and consumed in real-time by ML pipelines and

analytic applications. Many new database environments and

stream processing systems have been built recently, such as

Apache Kafka, Spark, and Flink [38], to handle the continuous

stream of data. However, stream processing frameworks are

still designed for centralized cloud environments and do not

fully address the challenges of managing the large volume of

streaming data at the edge.

The overview of typical Edge-AI applications supported by

edge computing is depicted in Fig. 1. IoT sensors are usually

implanted over System-on-Chip (SoCs) computing devices

that provide crucial computational resources. Still, SoCs have

limited computational capacities and energy budget, therefore

are not suitable for data management. However, they sup-

port lightweight data processing tasks such as data cleaning,

preprocessing, and encoding. Also, they rely on higher-layer

resources such as edge and cloud for complex data processing

tasks. Edge computing provides resources at the network edge,

usually at a one-hop distance from the sensors, to enable a

real-time computing experience for user applications. They

give access to computational resources where data stream

could be consumed in real-time and complex analytical tasks

could be performed such as data standardization and model

training. The remote Cloud provides elastic and inexpensive

resources for non-critical tasks such as data archival and batch

processing facilitating non-interactive applications. This multi-

tier computing model is creating a computing continuum from

the extreme edge (processing the data at the data source itself,

in our case, at SoCs in Fig. 1) to the remote cloud, enabling

truly distributed real-time computing where the data stream is

processed online on heterogeneous distributed resources.

The characteristics of hardware resources, cost, reliability,

and energy budget vastly differ among the resources across the

computing tiers. Consequently, the computing continuum is

creating completely different challenges for data management

that are unseen in the past. In the next section, we identify such

unique challenges associated with edge data management and

discuss them in detail.

302

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

III. CHALLENGES OF DATA-CENTRIC EDGE-AI

A. Data size

IoT sensors generate data in short periodic intervals, leading

to massive amounts of data generated within a short period

of time. It not only increases storage and processing cost

across the computing continuum but also puts tremendous

stress on the core backbone networks. While compression

could reduce the size of data considerably, computational

latency induced by compression and decompression tasks

affects real-time applications. Moreover, compression leads

to a loss of data accuracy, leading to inaccurate models in

Edge-AI. As identified in [5], 80% of energy at SoCs or

extreme edge resources are spent only on transferring the data

to the nearest processing server. Therefore, it is necessary

to develop data size reduction techniques that are suitable

for edge environments, requiring methods to deal with the

exponential growth of the data and assist Edge-AI applications

with minimal resource consumption.

B. Strict real-time requirements

Edge-AI applications support many real-time and near-real-

time critical applications. For real-time applications, response

times must be guaranteed within a specific deadline strictly.

On the other hand, in near real-time applications, a soft

deadline is expected for completing a data processing task.

For instance, a real-time traffic monitoring system might use

sensor data to detect high traffic volumes and update a map

to show congestion or detect blind spot objects in traffic

intersections to avoid potential accidents [29]. Similarly, a VR

gaming application expects near-real-time processing, and an

excessive latency will degrade the quality of experience of

users. Developing such systems needs to ingest, preprocess,

store, and analyze the data in real-time at high volumes.

While existing platforms support real-time requirements of

applications [2], [31], they still fail to provide the required

reliability and are resource inefficient.

C. Adaptive data processing for dynamic IoT/edge environ-
ment

IoT devices and sensors generate data in a distributed

heterogeneous environment, which leads to multiple issues,

such as (1) a high volume of data generated with irregular

velocity, (2) a change in the quality of data generated over

time, and (3) demand for highly flexible computing, storage

and network resources. In addition, Edge-AI applications are

continuously exposed to fluctuating workloads. Therefore, we

need to store and retrieve data from edge devices and sensors

in a way that meets the performance requirements of different

Edge-AI applications. Simple solutions like over-provisioning

resources for peak demand would greatly waste resources and

increase the cost of application service. On the other hand,

under-provisioning would affect the application requirements.

Therefore, we require scalable and cost-efficient methods to

meet the dynamic situations at the edge.

D. Incomplete and incorrect data

Machine learning pipelines require large amounts of data to

train a good-quality model. Data incompleteness is a natural

phenomenon in the IoT due to multiple factors, including (1)

temporary failure of sensor nodes, (2) network connectivity

issues, and (3) measurement errors. Traditionally, missing and

incorrect data is either completely removed or data imputation

techniques are used to fill in the missing data and correct the

data. Existing data imputation techniques depend on statistical

characteristics such as mean and median mode for missing

items [18] or pattern and correlation identification [22], [47].

Such data imputation techniques perform better when only

a small percentage of data is missing and are only feasible

for numerical time series data. However, modern IoT sensors

are generating not only time series data but also complex

data structures with categorical and multi-media data, which is

extremely difficult to recover or correct from simple statistical

tools. Moreover, we could expect a large volume of missing

data as the norm in edge data since IoT sensors are deployed

in unreliable environments [39]. Therefore, we require new

methods and techniques to handle missing and incorrect data

at the edge.

E. Energy

Energy is the main bottleneck across the computing contin-

uum for developing Edge-AI applications sustainably. First, at

the extreme edge, SoC sensor nodes spend a significant amount

of available energy on the communication subsystem [5].

Hence, reducing the required communication in resource-

constrained SoCs is essential for the efficacy of Edge-AI appli-

cations. Second, at the edge, the limited power budget is still a

big issue for efficient data processing [23], where edge devices

are often powered through a limited power supply (e.g., batter-

ies); therefore, energy efficiency is absolutely necessary at the

edge. On the other hand, cloud nodes usually have sufficient

energy available at their disposal. However, massive energy

consumption in the cloud leads to higher service costs and

negatively impacts the environment due to its CO2 footprint.

Thus, one single solution would not address all energy issues

that we have across the whole computing continuum. We

require new data processing methods and platforms that are

not only application-aware but also energy-aware in managing

data pipelines across computing-continuum.

Summary: Addressing the aforementioned challenges as-

sociated with edge data management impacts decision-making

through Edge-AI. Efficient data management in Edge-AI af-

fects crucial application and business domains, whether it

is related to energy efficiency, reducing traffic accidents or

improving air quality, and building Industry 4.0 applications,

among others. In the next section, we discuss the potential

future directions for edge data processing in relation to the

aforementioned challenges.

303

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

IV. FUTURE DIRECTIONS FOR DATA-CENTRIC EDGE-AI

A. Data size

Edge-AI requires intelligent data size reduction techniques

other than raw-data compression. In that regard, Symbolic

Representation (SR) of data could be potentially used for many

classes of ML applications without needing to reconstruct

the compressed data [2]. SR algorithms convert a time series

numerical IoT data into a reduced string with a specific length.

It makes an approximation of the input data by dividing the

time series into a certain number of segments in which data for

each segment can be represented by one specific value, i.e., the

average of its data points—the original length of the raw data

sequence to a reduced string, with a specific alphabet size. In

the context of an Edge-AI, this helps to reduce data dimension,

size, and network bandwidth usage, save edge storage, and

improve analytics features [19].

Nevertheless, many modern Edge-AI applications are built

upon diverse and complex types of IoT data, such as cate-

gorical and multi-media, with different data formats. In such

cases, it becomes important to develop application-specific

solutions to deal with data size. For example, decreasing frame

resolution in video results in negligible loss of model accuracy

[24]; moreover, we do not require high-resolution video frames

to train the accurate ML models. Thus, dynamic adaptation

of application-specific configurations will lead to a massive

reduction in data size.

B. Strict real-time requirements

Strict real-time data processing is an essential component

of Edge-AI due to time-sensitive requirements for decision-

making in emerging applications. Therefore, it needs com-

pletely new low-latency data processing methods. Latency

is mainly introduced by two components, i.e., computational
latency and network latency. Tackling computational latency

would require techniques such as smart placement of tasks

on edge nodes with accelerators or nodes with higher com-

puting power [43]. In a real setting, achieving this constraint

becomes challenging due to shared environments and dynamic

workloads. Similarly, MLOps such as model quantization and

neural network pruning [46] become extremely important at

the edge to reduce the computational complexity of machine

learning models.

Network latency can be decreased by setting up hyper-

distributed edge resources closer to application access

points [9]. However, this may not always be feasible due to

the cost of infrastructure setup and the practical limitations

of geographical locations. In addition, many Edge-AI appli-

cations have to deal with user mobility and mobile access

points (e.g., autonomous vehicles, drones). Thus, resource

provisioning and scheduling approaches should be mobility-

aware to meet the network latency requirements. For such

scenarios, we envision that spare computing resources in

autonomous vehicles, IoT edge devices, and smart systems

could be dynamically leased in the near future, resulting

in ”data centers on wheels” paradigm [41], that enables

extreme-edge and dynamic mobile computing. However, to

realize such a computing paradigm, secure and cost-efficient

resource-sharing platforms are required. Unlike the cloud,

which has established interoperability standards and matured

virtualization technology for secure resource sharing, the edge

still requires the development of new standards, lightweight

virtualization techniques, and software stacks.

C. Adaptive data processing for dynamic IoT/Edge

Edge-AI applications are subject to constantly changing

workloads. Flexible data processing techniques should be de-

veloped, such as adaptive sensing [37] and approximate com-

puting [48]. Adaptive sensing needs to consider the require-

ments of applications and should only produce and process

new data only when required. For example, temperature sensor

readings do not drastically change most days. Instead of a fixed

sensing interval, adapting for a dynamic delayed interval based

on the change in actual data could lead to resource efficiency

without affecting applications [4], [30]. Similarly, approximate

computing in Edge-AI focuses on less precision computation

with much lower computational latency. For example, model

training and inference with 16-bit computation results in a

reduction of multiple magnitudes of computational latency

[46] with a little loss in accuracy.

D. Incomplete and incorrect Data

The problem of missing and incomplete data in Edge-AI can

be dealt through data-driven methods, going beyond current

statistical tools. Particularly, generative AI [32], [34] has been

proven to be a feasible method for data imputation [21], [25].

Moreover, federated generative models are able to impute

the missing data, learning from the data distribution from

other sensors in the network. In addition, generative methods

are also able to create new synthetic data sets required for

training the machine learning models [49]. At the same time,

generative AI has many applications in different areas ranging

from creating AI-generated art and a principal role in the

development of large language models, such as ChatGPT.

However, in general, generative AI suffers from the problem

of hallucinating [6], i.e., the generation of plausible outputs

which are factually incorrect or unrelated to the given context.

Consequently, using generative AI for incomplete or incorrect

IoT data might result in completely unseen data distribution

compared to real data, and models trained on such data could

fit into non-real settings. Therefore, methods to verify whether

newly constructed data reflects the actual environments or

measurements, avoiding inherent biases of AI models, is of

research interest to many.

E. Energy

We do require different energy efficiency measures in each

layer of the computing continuum. Since SoCs major energy

consumption factor is its communication module, we should

focus on developing intelligent data-transfer techniques be-

tween SoCs and edge. For instance, transferring data only

when a new measurement has a deviation from a recent past

304

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

measurement [5]. Alternatively, not transferring the actual

data, rather employing predictive models at the edge to esti-

mate the sensor data, and only transfer locally trained models

to the edge in a periodic manner or when model drift happens

with certain thresholds [14]. In addition to energy-aware

approaches in managing continuum resources using traditional

methods such as energy-aware scheduling and task placements

[20], we require different workload distribution strategies in

Edge-AI. Since Edge-AI application components are deployed

on distributed infrastructure, workload distribution techniques

such as split computing [50] shall be leveraged, where neural

networks are dynamically partitioned and deployed across a

computing continuum based on the energy budget and latency

requirements.

F. Emerging hardware architectures, software paradigms, and
future application requirements

While data processing systems should support new data

flows and techniques, they should also consider the require-

ments of the future new Edge-AI applications. There is a

paradigm shift in software engineering, where monolithic soft-

ware applications are decomposed into micro-service-based

applications due to their flexibility in developing and maintain-

ing software applications. The application software systems

have quickly adapted to this new paradigm, data processing

systems are still heavily dependent on traditional monolithic

architectures (e.g., Hadoop, Spark), which are resource hungry

and fail to match the requirements of Edge-AI. In addition,

future Edge-AI applications would spend the majority of their

computational cycles on ML model training and inference

where different specialized accelerators are necessary [20].

Currently, most edge accelerators (e.g., NVIDIA Jetson Nano,

Google Coral device) are designed for inference and many

powerful accelerators in the cloud are used for training large

ML models. Thus, we require hardware-software co-design

to for benefiting from heterogeneous resources across the

computing continuum without too many manual configurations

and system tuning.

V. USE CASE: SYMBOLIC REPRESENTATION OF IOT DATA

AT EDGE

The development of IoT-assisted smart applications such

as smart wearables, which monitor and track vital signs of

patients, or smart meters, that balance energy demand and

supply in smart grids, generate a large amount of time-

series data. Such time-series data are usually transferred to

nearby processing devices (e.g., an edge node) to be analyzed.

This data transfer can create congestion and consume crucial

network bandwidth resources, decreasing the quality of service

(QoS) for latency-sensitive smart applications. Moreover, raw

data storage on the edge is expensive and infeasible due

to limited storage capacity. Consequently, reducing the data

size at the source and reconstructing it at the remote edge

node (when required) could reduce the network and storage

cost. Symbolic Representation (SR) techniques are promising

methods for reducing time-series data size while maintaining

the semantics of the data [26].

Unlike common raw data compression methods, the symbol-

ically converted data can still be used to directly perform data

mining tasks such as pattern matching, substring search, motif

discovery, and time series prediction, which are commonly

used techniques in IoT applications [16]. Nevertheless, if

required, it is still possible to reconstruct the original data

at run time with minimal reconstruction error.

Symbolic representation of data: A SR algorithm trans-

forms time series data into a string using finite alphabet

size, representing a time series of length n into the string

with arbitrary length k (<< n). Let us consider a time

series T = [t0, t1, ..., tN] ∈ R
N+1 converted into a symbolic

representation S = [s1, s2, ..., sn] ∈ An, where each sj is an

element of an alphabet A = a1, a2, ..., ak of k symbols [16].

The sequence S should be of considerably lower dimension

than the original time series T , that is n << N , and it

should only use a small number of meaningful symbols, that

is k << n. This intermediate representation must also allow

an approximate reconstruction of the original time series, with

(1) a minimal and controllable error and (2) the shape of the

reconstruction suitably close to the original time series data.

Adaptive Brownian Bridge-based Aggregation (ABBA)

[16] is one of the SR algorithms that converts time series

data into symbols. A sample illustration of how time series

data is converted into symbolic representation is shown in

Fig. 2. Here, the black line on the left side figure represents

the original data, and the rightmost side shows symbolically

represented data. An SR process involves two parts, namely,

(1) the original data is split into segments, either adaptive

or user-defined interval numbers and (2) segments are

mapped to symbols. In the case of ABBA, segments are

found adaptively (left), and relatively similar segments are

clustered together (middle), and each cluster is mapped to a

symbol from the alphabet. A tolerance hyperparameter tol
sets boundaries for the allowed reconstruction error, where a

lower value results in a lower reconstruction error, but also a

lower compression rate with more symbols. In this example,

230 data points are converted to a word of just 7 symbols

(rightmost part of Fig. 2). A similar inverse approach will be

applied during the reconstruction of the data. However, many

challenges arise when using such algorithms in online and

resource-constrained edge environments, as described in the

next subsection.

A. Design requirements of symbolic representation of data at
edge

The state-of-the-art SR algorithms are designed for cen-

tralized batch processing systems and perform an offline

conversion. The existing SR algorithms have limited applica-

bility for edge environments because of the following design

requirements:

1) Online: Compression at the Edge should be continuous,

i.e., data should be compressed immediately after being

305

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

0 5 0 1 0 0 1 5 0 2 0 0

t im e p o in t

3

2

1

0

1

2

3

4

v
a

lu
e

1

2
3

4

5

6

7

orig in a l t im e s e rie s

p o lyg on a l ch a in a p p roxim a t ion

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0

le n g th

8

6

4

2

0

2

4

in
c

re
m

e
n

t

1

2

3

4

5

6

7

a

b

c

p ie ce s

c lu s te r ce n te rs

abbacab

Fig. 2. An illustration of symbolic representation using ABBA [16], [19]. (i) Creating linear pieces using a polygonal chain (left side); (ii) Clustering of
pieces (middle); (iii) Symbolizing (right side), i.e., abbacab.

Online Compression

Online Digitization

 Construction of

Linear Piece

Symbolic Conversion
- Receiver Side

Online

Normalization

 Compression
- Sender Side

Fig. 3. SymED Components

received since IoT data is produced continuously. Exist-

ing SR algorithms are designed to work with batch data,

assuming the entire dataset is available prior.

2) Adaptive: A SR algorithm should be adaptive (unlike

current methods that have fixed parameters such as win-

dow and alphabet size), allowing flexibility to configure

user-defined parameters, such as rate of compression

and error rate in reconstruction based on application and

resource constraints.

3) Distributed: A SR should be distributed in edge en-

vironments since data sources (IoT sensors) and data-

consuming nodes are different. The data source does not

have enough computational and network capabilities to

perform all the steps involved in SR and store the data

locally.

In the next subsection, we describe the adaptive SR method

suitable for the edge environment.

B. SymEd: Symbolic representation of data at Edge

We discuss our idea of leveraging symbolic representation

for data-centric Edge-AI. We discuss SymED 1, Symbolic

Edge Data representation method [19], i.e., an online, adap-

tive, and distributed approach for symbolic representation of

streaming data on edge. SymED is based on the Adaptive

Brownian Bridge-based Aggregation (ABBA) [16]. Here, we

1The presented use case idea is published in [19]; more details about it can
be found in the referred paper online.

assume low-powered IoT devices do initial data compression

(senders), and the more robust edge devices do the symbolic

conversion (receivers). The goal is to enable distributed sym-

bolic representation where raw data communication and stor-

age usage are limited in IoT-edge environments. Fig. 3 shows

the SymED components. A sender (IoT node) normalizes and

compresses all incoming data. A receiver (edge node) collects

transmitted data to construct linear pieces (line segments), con-

verts them to symbols in the digitization phase, and optionally

reconstructs pieces or symbols again. This method reduces the

number of transmitted bytes between IoT and edge devices

by efficiently distributing computational tasks of the symbolic

representation algorithm between the sender (IoT) and receiver

(edge devices). The detailed algorithmic steps of each SymED

component (Fig. 3), and its implementation is in [19].

The experiments conducted on 24 datasets from UCR time

series classification archive [12] demonstrate that SymEd can

significantly reduce the raw data size with minimal compu-

tational latency. In summary, SymED achieves on average

9.5% on compression rate and dimension reduction rate, with

a mean online reconstruction error of 13.25, while taking

a mean time of 42ms to compute a symbol. With a slight

overhead in compression performance and computational ef-

ficiency compared to offline ABBA, online SymED enables

real-time symbolic conversion while improving reconstruction

accuracy and adapting to the data stream distribution.

VI. RELATED WORK

The concept of edge computing and its role in IoT has

been discussed by [7], which introduces the main concepts

of edge/fog architectures and identifies the main challenges.

A first tentative in the standardization of edge computing

has been described by works such as [17]. Research efforts

related to edge data management focus mostly on storage

management [27] and in the recovery of time series data,

by means of forecasting methods [28] and imputation [22].

However, most of these works are focused on the analysis

of time series data and do not consider challenges related to

Edge-AI applications.

Edge-AI has been discussed in works such as [50]. Different

use cases for Edge-AI have been proposed in recent years,

306

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

such as vehicular traffic safety [29], and environmental moni-

toring [3]. Challenges of guaranteeing efficient data streaming

at the edge are discussed in works such as [38], [40].

In this work, we focus on identifying challenges and re-

search opportunities of data-intensive Edge-AI applications,

whose goal is to reduce data size while guaranteeing high

accuracy of Edge-AI models, and identify a use case for data

compression techniques, starting from our seminal work in

symbolic data representation at the edge [19].

VII. CONCLUSIONS

AI-based applications are becoming pervasive and moving

from centralized cloud deployments to the network edge,

leading to Edge-AI. Edge-AI applications have to deal with

a continuous stream of IoT data and support the latency

requirements of IoT applications. To efficiently utilize edge

resources and process streaming data, we require completely

new approaches, i.e., a data-centric view of how data, applica-

tions and resources are managed, considering the capabilities

and limitations of edge environments. In this paper, we have

discussed the challenges associated with the data-centric Edge-

AI and identified the potential future directions describing

different methods and techniques that we can apply to solve the

identified challenges. As a use case, we presented the adaptive

symbolic representation of IoT data to reduce the streaming

data size and support in developing ML applications.

ACKNOWLEDGEMENTS

This work is partially funded by the follwing projects: (i)

Rucon project (Runtime Control in Multi Clouds), FWF Y

904 START-Programm, 2015. (ii) SWAIN project, CHIST-

ERA grant CHIST-ERA-19-CES-005, 2021. (iii) FFG Flagship

HPQC project (High-Performance Integrated Quantum Com-

puting), 897481, 2022.

REFERENCES

[1] What is a containerized data center: Pros and cons.
https://community.fs.com/blog/what-is-a-containerized-data-center-
pros-and-cons.html (2022), [Online; accessed 05-May-2023]

[2] Abbas, N., Asim, M., Tariq, N., Baker, T., Abbas, S.: A mechanism for
securing iot-enabled applications at the fog layer. Journal of Sensor and
Actuator Networks 8(1), 16 (2019)

[3] Ahmad, S., Aral, A.: Fedcd: Personalized federated learning via collab-
orative distillation. In: 2022 IEEE/ACM 15th International Conference
on Utility and Cloud Computing (UCC). pp. 189–194. IEEE (2022)

[4] Almeida, F., Assunção, M.D., Barbosa, J., Blanco, V., Brandic, I., Da
Costa, G., Dolz, M.F., Elster, A.C., Jarus, M., Karatza, H.D., Lefèvre,
L., Mavridis, I., Oleksiak, A., Orgerie, A.C., Pierson, J.M.: Energy
monitoring as an essential building block towards sustainable ultrascale
systems. Sustainable Computing: Informatics and Systems 17, 27–
42 (2018). https://doi.org/https://doi.org/10.1016/j.suscom.2017.10.013,
https://www.sciencedirect.com/science/article/pii/S2210537916301536

[5] Anastasi, G., Conti, M., Francesco, M.D., Passarella, A.: Energy con-
servation in wireless sensor networks: A survey. Ad Hoc Networks 7(3),
537–568 (May 2009). https://doi.org/10.1016/j.adhoc.2008.06.003

[6] Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D., Wilie, B., Lovenia,
H., Ji, Z., Yu, T., Chung, W., Do, Q.V., Xu, Y., Fung, P.: A multitask,
multilingual, multimodal evaluation of chatgpt on reasoning, hallucina-
tion, and interactivity (2023)

[7] Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its
role in the internet of things. In: Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. pp. 13–16. ACM (2012)

[8] Buyya, R., Srirama, S.N., Casale, G., Calheiros, R., Simmhan, Y.,
Varghese, B., Gelenbe, E., Javadi, B., Vaquero, L.M., Netto, M.A., et al.:
A manifesto for future generation cloud computing: Research directions
for the next decade. arXiv preprint arXiv:1711.09123 (2017)

[9] Charyyev, B., Arslan, E., Gunes, M.H.: Latency comparison of
cloud datacenters and edge servers. In: GLOBECOM 2020 -
2020 IEEE Global Communications Conference. pp. 1–6 (2020).
https://doi.org/10.1109/GLOBECOM42002.2020.9322406

[10] Chen, Y.K.: Challenges and opportunities of internet of things. In:
Design Automation Conference (ASP-DAC), 2012 17th Asia and South
Pacific. pp. 383–388. Citeseer (2012)

[11] Cui, E., Yang, D., Zhang, H., Gidlund, M.: Improving power stability
of energy harvesting devices with edge computing-assisted time fair
energy allocation. IEEE Transactions on Green Communications and
Networking 5(1), 540–551 (2020)

[12] Dau, H.A., Bagnall, A., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi,
S., Ratanamahatana, C.A., Keogh, E.: The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica 6(6), 1293–1305 (2019)

[13] Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., Zomaya, A.Y.:
Edge intelligence: The confluence of edge computing and artificial
intelligence. IEEE Internet of Things Journal 7(8), 7457–7469 (2020).
https://doi.org/10.1109/JIOT.2020.2984887

[14] Dias, G.M., Bellalta, B., Oechsner, S.: The impact of dual predic-
tion schemes on the reduction of the number of transmissions in
sensor networks. Computer Communications 112, 58–72 (Nov 2017).
https://doi.org/10.1016/j.comcom.2017.08.002

[15] Ding, A.Y., Peltonen, E., Meuser, T., Aral, A., Becker, C., Dustdar,
S., Hiessl, T., Kranzlmüller, D., Liyanage, M., Maghsudi, S., et al.:
Roadmap for edge ai: A dagstuhl perspective (2022)

[16] Elsworth, S., Güttel, S.: Abba: adaptive brownian bridge-based symbolic
aggregation of time series. Data Mining and Knowledge Discovery
34(4), 1175–1200 (2020)

[17] Group, O.C.A.W., et al.: Openfog reference architecture for fog com-
puting. OPFRA001 20817, 162 (2017)

[18] Hadeed, S.J., O’Rourke, M.K., Burgess, J.L., Harris, R.B., Canales,
R.A.: Imputation methods for addressing missing data in short-term
monitoring of air pollutants. Science of The Total Environment 730,
139140 (2020)

[19] Hofstätter, D., Ilager, S., Lujic, I., Brandic, I.: Symed: Adaptive and
online symbolic representation of data on the edge. In: Proceedings of
the 29th International European Conference on Parallel and Distributed
Computing (Europar). Springer (2023)

[20] Ilager, S., Muralidhar, R., Buyya, R.: Artificial intelligence (ai)-centric
management of resources in modern distributed computing systems.
CoRR abs/2006.05075 (2020), https://arxiv.org/abs/2006.05075

[21] Jiang, H., Wan, C., Yang, K., Ding, Y., Xue, S.: Continuous missing data
imputation with incomplete dataset by generative adversarial networks–
based unsupervised learning for long-term bridge health monitoring.
Structural Health Monitoring 21(3), 1093–1109 (2022)

[22] Junger, W., de Leon, A.P.: Imputation of missing data in time series for
air pollutants. Atmospheric Environment 102, 96–104 (2015)

[23] Khan, M.A., Algarni, F., Quasim, M.T.: Decentralised internet of things.
Decentralised Internet of Things: A Blockchain Perspective pp. 3–20
(2020)

[24] Khochare, A., Krishnan, A., Simmhan, Y.: A scalable platform for
distributed object tracking across a many-camera network. IEEE Trans-
actions on Parallel and Distributed Systems 32(6), 1479–1493 (2021).
https://doi.org/10.1109/TPDS.2021.3049450

[25] Kuppannagari, S.R., Fu, Y., Chueng, C.M., Prasanna, V.K.: Spatio-
temporal missing data imputation for smart power grids. In: Proceed-
ings of the Twelfth ACM International Conference on Future Energy
Systems. pp. 458–465 (2021)

[26] Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel
symbolic representation of time series. Data Mining and knowledge
discovery 15(2), 107–144 (2007)

[27] Lujic, I., De Maio, V., Brandic, I.: Efficient edge storage management
based on near real-time forecasts. In: 2017 IEEE 1st International
Conference on Fog and Edge Computing (ICFEC). pp. 21–30. IEEE
(2017)

[28] Lujic, I., De Maio, V., Brandic, I.: Adaptive recovery of incomplete
datasets for edge analytics. In: Fog and Edge Computing (ICFEC), 2018
IEEE 2nd International Conference on. pp. 1–10. IEEE (2018)

[29] Lujic, I., Maio, V.D., Pollhammer, K., Bodrozic, I., Lasic, J.,
Brandic, I.: Increasing traffic safety with real-time edge ana-

307

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

lytics and 5g. In: Proceedings of the 4th International Work-
shop on Edge Systems, Analytics and Networking. p. 19–24.
EdgeSys ’21, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3434770.3459732, https://doi.org/
10.1145/3434770.3459732

[30] Mastelic, T., Brandic, I.: Data velocity scaling via dynamic monitoring
frequency on ultrascale infrastructures. In: 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom).
pp. 422–425. IEEE (2015)

[31] Montella, R., Ruggieri, M., Kosta, S.: A fast, secure, reliable, and
resilient data transfer framework for pervasive iot applications. In:
Conference on Computer Communications Workshops. pp. 710–715.
IEEE (2018)

[32] Noy, S., Zhang, W.: Experimental evidence on the productivity effects
of generative artificial intelligence. Available at SSRN 4375283 (2023)

[33] Papageorgiou, A., Cheng, B., Kovacs, E.: Real-time data reduction at the
network edge of internet-of-things systems. In: 2015 11th International
Conference on Network and Service Management (CNSM). pp. 284–
291. IEEE (2015)

[34] Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical
text-conditional image generation with clip latents (2022)

[35] Ranjan, R.: Streaming big data processing in datacenter clouds. IEEE
Cloud Computing 1(1), 78–83 (2014)

[36] Schulz, P., Matthe, M., Klessig, H., Simsek, M., Fettweis, G., Ansari, J.,
Ashraf, S.A., Almeroth, B., Voigt, J., Riedel, I., et al.: Latency critical
iot applications in 5g: Perspective on the design of radio interface and
network architecture. IEEE Communications Magazine 55(2), 70–78
(2017)

[37] Sekine, M., Ikada, S.: Adaptive cooperative distributed compressed
sensing for edge devices: a multiagent deep reinforcement learning ap-
proach. In: 2021 IEEE International Conference on Pervasive Computing
and Communications Workshops and other Affiliated Events (PerCom
Workshops). pp. 585–591. IEEE (2021)

[38] Shahverdi, E., Awad, A., Sakr, S.: Big stream processing systems: an
experimental evaluation. In: 2019 IEEE 35th International Conference
on Data Engineering Workshops (ICDEW). pp. 53–60. IEEE (2019)

[39] Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and
challenges. IEEE internet of things journal 3(5), 637–646 (2016)

[40] Shi, Y., Yang, K., Jiang, T., Zhang, J., Letaief, K.B.: Communication-
efficient edge ai: Algorithms and systems. IEEE Communications Sur-
veys & Tutorials 22(4), 2167–2191 (2020)

[41] Sudhakar, S., Sze, V., Karaman, S.: Data centers on wheels: Emissions
from computing onboard autonomous vehicles. IEEE Micro 43(1), 29–
39 (2023). https://doi.org/10.1109/MM.2022.3219803

[42] Sun, X., Ansari, N.: Edgeiot: Mobile edge computing for the internet of
things. IEEE Communications Magazine 54(12), 22–29 (2016)

[43] Tuli, S., Ilager, S., Ramamohanarao, K., Buyya, R.: Dynamic
scheduling for stochastic edge-cloud computing environments
using a3c learning and residual recurrent neural networks. IEEE
Transactions on Mobile Computing 21(3), 940–954 (2022).
https://doi.org/10.1109/TMC.2020.3017079

[44] Wang, J.B., Zhang, J., Ding, C., Zhang, H., Lin, M., Wang, J.: Joint
optimization of transmission bandwidth allocation and data compression
for mobile-edge computing systems. IEEE Communications Letters
24(10), 2245–2249 (2020)

[45] Wang, S., Tuor, T., Salonidis, T., Leung, K.K., Makaya, C., He, T., Chan,
K.: Adaptive federated learning in resource constrained edge computing
systems. IEEE journal on selected areas in communications 37(6), 1205–
1221 (2019)

[46] Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., Wang, H., Lin, Y., Han,
S.: Apq: Joint search for network architecture, pruning and quantization
policy. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 2078–2087 (2020)

[47] Wellenzohn, K., Böhlen, M.H., Dignös, A., Gamper, J., Mitterer,
H.: Continuous imputation of missing values in streams of pattern-
determining time series. In: EDBT. pp. 330–341 (2017)

[48] Wen, Z., Quoc, D.L., Bhatotia, P., Chen, R., Lee, M.: Approxiot:
Approximate analytics for edge computing. In: 2018 IEEE 38th Inter-
national Conference on Distributed Computing Systems (ICDCS). pp.
411–421 (2018). https://doi.org/10.1109/ICDCS.2018.00048

[49] Zhang, C., Kuppannagari, S.R., Kannan, R., Prasanna, V.K.: Generative
adversarial network for synthetic time series data generation in smart
grids. In: 2018 IEEE International Conference on Communications, Con-

trol, and Computing Technologies for Smart Grids (SmartGridComm).
pp. 1–6 (2018). https://doi.org/10.1109/SmartGridComm.2018.8587464

[50] Zhao, Z., Barijough, K.M., Gerstlauer, A.: Deepthings: Dis-
tributed adaptive deep learning inference on resource-constrained
iot edge clusters. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 37(11), 2348–2359 (2018).
https://doi.org/10.1109/TCAD.2018.2858384

308

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 20,2023 at 13:30:55 UTC from IEEE Xplore. Restrictions apply.

